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Abstract

Large eddy simulation (LES) of fully developed, incompressible turbulent channel flows are presented for stationary and rotating

pipes. A dynamic model and the Smagorinsky model were used and compared with DNS results. The 3-D governing equations

written in a cylindrical coordinate system were solved by a finite difference method, second-order accurate in space and in time. The

features of the flows at two Reynolds numbers and for various rotation speeds are discussed and compared to available data of

literature.

� 2003 Published by Elsevier Science Inc.
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1. Introduction

Turbulent circular pipe flows have attracted the

interest of many investigators. The simplest case of non-

rotating pipe has been extensively studied experimen-
tally (Laufer, 1954; Lawn, 1971) and numerically. Most

of the numerical simulations were focused on the flow

stability and transition regime (Itoh, 1977; Patera and

Orszag, 1981). Some direct numerical simulations

(DNS) have also been performed. Using mixed finite-

difference and spectral methods, Nikitin (1993) obtained

satisfactory agreement with experimental data within a

range of Reynolds number from 2250 to 5900. Unger
et al. (1993) obtained excellent agreement with experi-

ments, using a second order accurate finite-difference

method, and confirmed that pipe flow at the lowest

range of turbulent Reynolds number deviates from the

universal logarithmic law. Zhang et al. (1994) presented

simulations of turbulent pipe flows at moderate Rey-

nolds number by using a 3-D spectral code. Their results

agree satisfactorily with experiments and previous nu-
merical simulations. Eggels et al. (1994b) have carried

out DNS and experiments in order to investigate the

differences between fully developed turbulent flow in

circular and plane channels, and concluded that most of

the statistics on fluctuating velocities are marginally af-

fected by the axisymmetry of the duct geometry.

When a fluid enters a rotating pipe, a tangential

component of velocity is brought by the moving wall
and the flow exhibits a complicated three-dimensional

behaviour. The high levels of turbulence and large

shearing rates associated with swirling flows enhance the

mixing process and provide a more homogeneous flow

fluids. Recently, numerical simulation of turbulent ro-

tating pipe flow has received some interest. For example,

Eggels et al. (1994a) used a DNS of the turbulent ro-

tating pipe flow for moderate values of the rotation
number, N , and confirmed that the drag is reduced as it

has been observed experimentally. Orlandi and Fatica

(1997) performed also DNS of turbulent rotating pipe

flows for rotation number out of the range considered

by Eggels et al. (1994a) but not high enough to include a

re-laminarization of the flow, and to analyse the modi-

fications of the near-wall vortical structures. They

showed that a degree of drag reduction is achieved in the
numerical simulations like in the experiments, and that

the changes in turbulence statistics are due to the tilting

of the near-wall streamwise vortical structures in the

direction of rotation. In the more recent study by

Orlandi and Ebstein (2000), N has been increased up to

10 and the budgets for the Reynolds stresses were

evaluated; these budgets being of great importance in
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the development of improved one-closure turbulence

models applied to rotating flows.

Investigations devoted to LES of turbulent pipe flow

are very few in the literature. The first LES work on

fully developed turbulent pipe flow was by Unger and

Friedrich (1991). LES have been applied to flows in

complex geometries to a very limited extent. The major

reasons for this are due to the difficulty in describing
non-trivial geometries accurately whilst limiting the

number of computational grid points. LES predictions

on turbulent pipe flow with rotation are extremely

scarce. Eggels and Nieuwstadt (1993) used a Smago-

rinsky model and showed that their numerical results

compared reasonably well with experimental data. More

recently, Yang and McGuirk (1999) examined by using

LES the effects of swirl driven by the rotating wall, and
their numerical results compare reasonably well with the

measurements of Imao and Itoh (1996). However, the

performance of the dynamic subgrid scale model was

only slightly better than that of the Smagorinsky model

in their study. They pointed out that the reason may be

the use of a too fine mesh. They have confirmed nu-

merically by LES the experimental observations that

turbulence decreases with an increase in pipe rotation
due to the stabilizing effect of the centrifugal force.

In this study, we present results for LES of a rotating

pipe flow at moderate Reynolds numbers (Re ¼ 4900

and Re ¼ 7400). The numerical results are compared to

simulations obtained for the same Reynolds number,

namely the DNS by Orlandi and Fatica (1997) which

compare reasonably well with available experimental

data. The main objective of this work is to study fully
turbulent rotating pipe flow by LES and to assess the

performances of two different subgrid scale models (a

dynamic model and the Smagorinsky model) for swirl-

ing flows, in particular to examine whether the effects of

swirl driven by the rotating wall are properly captured

by LES.

2. Basic equations and numerical procedure

The governing equations for an incompressible,

newtonian fluid flow (3D Navier–Stokes equations) are

cast in terms of the new variables qr ¼ r:vr, qh ¼ vh and

qz ¼ vz to avoid the singularity at the axis r ¼ 0 (Fig. 1).

The dimensionless equations in a cylindrical polar co-

ordinate system using Up, the centreline streamwise ve-
locity of the laminar Poiseuille flow, and the pipe radius

R as velocity and length scales, respectively, have the

form:
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Nomenclature

Lz length of the computational domain

N rotation number

r dimensionless coordinate in radial direc-

tion scaled by the pipe radius

R pipe radius (m)

Sij rate of strain tensor

us shear stress velocity

Ub ¼ Up=2 bulk velocity
Up centreline streamwise velocity of the lami-

nar Poiseuille flow

v0r, v
0
h, v

0
z fluctuating velocity components

hv0rv0zi one of the six Reynolds stress components

y dimensionless distance from the wall, y ¼ 1� r
yþ ¼ ð1� rÞus=m distance from the wall in viscous

wall units

z coordinate in axial direction

Greeks

D ¼ ðrDrDhDzÞ1=3 characteristic gridspacing

Dr gridspacing in radial direction

Dh gridspacing in circumferential direction

Dz gridspacing in axial direction

m kinematic viscosity
h coordinate in circumferential direction

r

 zL  =20R

 
 zz, q

θ, qθ

r, q   
R

Fig. 1. Schematic of turbulent flow in an axially rotating circular pipe.

A.A. Feiz et al. / Int. J. Heat and Fluid Flow 24 (2003) 412–420 413



oqz
ot

þ 1

r
oqr qz
or

þ 1

r
oqh qz

oh
þ oqz qz

oz

¼ � oP
oz

þ 1

Re
1

r
orŝsrz
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The dimensionless numbers are the Reynolds number,

Re ¼ 2UbR=m, and the rotation number, N ¼ XR=Ub

(related to Rossby number by N ¼ 1=Ro). A mean

pressure gradient in the qz equation maintains a constant

bulk velocity Ub. The total stresses ŝsij ¼ sij þ s0ij are

ŝsij ¼ ð1þ mTReÞSij where the strain tensor expressed by

the variables qi is:
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The eddy viscosity mT has different expressions according

to the subgrid model used.

2.1. Smagorinsky model

In this model, the subgrid scale eddy viscosity is re-

lated to the deformation of the resolved velocity field as:

mT ¼ ðCSDÞ2jSj ¼ ðCSDÞ2½2Sij Sij�1=2

In the present study, the Smagorinsky coefficient CS is

set equal to 0.15. For a discussion on the value and the

interpretation of this constant, we refer to Mason and

Callen (1986). This subgrid model largely used in LES of

isotropic turbulence produced good results. When ap-

plied to inhomogeneous, and in particular to wall
bounded flows, the constant was modified.

2.2. Dynamic eddy viscosity model

The dynamic model provides a methodology for de-

termining an appropriate local value of the Smagorinsky

coefficient. The model was proposed by Germano et al.

(1991), with important modifications and extensions
provided by Lilly (1992). In this model, the constant Cd

is not given a priori, but is computed during the simu-

lation from the flow variables. The turbulent viscosity is

expressed using an eddy viscosity assumption as:

mT ¼ CdðD2Þ 2Sij Sij
� �1=2

Cd is dynamically determined as follows.

Two different filter widths are introduced; the test

filter eDD is larger than the computational filter D and it is

applied to the momentum equations. Germano et al.

(1991) derived an exact relationship between the subgrid

scale stress tensors at the two different filter widths

(Germano identity). Substitution of a Smagorinsky form

jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
for the subgrid scale stress into Germano

identity, along with some additional assumptions (Lilly,
1992), leads to the following expression for Cd:

Cd ¼ � 1

2D2

hLijMiji
hMijMiji

ð1Þ

where the second order tensors Lij and Mij are given as
follows:

Lij ¼ g�qqi�qqj�qqi�qqj � ~�qq�qqi ~�qqj�qqj ¼ �2CdD
2Mij; Mij ¼

fD2D2

D2
jeSS jfSijSij � gjSjSijjSjSij

Positive values of Cd are linked to energy flowing from

large to small scales and negative values to energy going

from small to large scales (backward energy transfer).

The angled brackets in Eq. (1) denotes averages in the
homogeneous direction.

2.3. Numerical procedures

The governing equations were discretized on a stag-

gered mesh in cylindrical coordinates. The solutions

were obtained by using a finite difference scheme, sec-

ond-order accurate in space and in time, based on a
fractional-step method. The advancement in time is ac-

complished by a third-order Runge–Kutta explicit

scheme for the non-linear term while the viscous term

employs a Crank–Nicholson implicit scheme. Uniform

computational grid and periodic boundary conditions

were applied to the circumferential and axial directions.

In the radial direction, non-uniform meshes specified by

a hyperbolic tangent function were employed. On the
pipe wall, the usual no-slip boundary condition is ap-

plied.

Most of the computations for a pipe of length

Lz ¼ 20R were performed using a 65� 39� 65 grid but

the influence of the grid resolution on the accuracy of

the solution was investigated. The finest grid

(129� 49� 129) leads to well resolved simulations.

However, the 65� 39� 65 grid predicts and captures all
of the features of the flow although small differences

occur between some of the statistics obtained with these

two grids. Since, the fine grid requires much larger CPU-

time and storage requirements, we performed simula-

tions on the 65� 39� 65 grid which gives a good

compromise between CPU-time and accuracy. The final

statistics are accumulated by spatial averaging in the

homogeneous streamwise and circumferential directions
and by time-averaging. The runs with the Smagorinsky

subgrid scale model and a dynamic subgrid scale model

have been carried out for the non-rotating pipe wall and

for the rotating pipe wall at two rotation rates, N ¼ 1

and N ¼ 2, and at two Reynolds numbers, Re ¼ 4900

and Re ¼ 7400.
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3. Results and discussion

The axial mean velocity profile is plotted in Fig. 2

versus the dimensionless distance from the wall for
various rotation numbers (N ¼ 0, 1, 2). When the pipe is

rotating the streamwise velocity increases near the centre

and decreases near the wall. The computational mean

velocity profile gradually approaches a Poiseuille profile,

due to the stabilizing effect of the centrifugal force. This

laminarization phenomena is the deformation of the

axial velocity profile into a shape similar to the laminar

one, and the decrease of the friction factor caused by the
pipe rotation. This observation has been reported by

other investigators (Nishibori et al., 1987; Hirai et al.,

1988). Therefore, rotation has a very marked influence

on the damping of the turbulent motion and on the drag

reduction (see experiments by Nishibori et al., 1987,

Reich and Beer, 1989, Imao and Itoh, 1996). Orlandi

and Fatica (1997), using DNS, added a further contri-

bution by relating the drag reduction to the modifica-
tions of the near-wall vortical structures.

Fig. 3 shows the streamwise velocity profile normal-

ized by the wall shear velocity versus the distance from

the wall in wall units yþ. Solid lines represent the uni-

versal velocity distributions in the viscous sublayer, in

the buffer layer and in the inertial sublayer. The viscous

sublayer is well resolved in the numerical simulations,

yielding the linear velocity distribution vþz ¼ yþ for
yþ < 5. The buffer region is also well predicted in ac-

cordance with the log-law vþz ¼ �3:05þ 5 ln yþ. The

agreement is not so good with the log-law at larger

distances from the wall (yþ > 30) for the present LES

results as well as for the experimental data by Eggels

et al. (1994a). The reason is that the log-laws are not

observed in the pipe flow for Re6 9600 (Re ¼ 2UbR=m),
in contrast to plane channel flow, since the log-law is

only justified at large Reynolds numbers (Tennekes and

Lumley, 1972). When the pipe rotates, the differences

between the computed mean velocity and the log-laws

are due to the relaminarization of the flow when in-
creasing N . Similar observations have been reported for

the DNS by Orlandi and Fatica (1997). This agrees with

most experimental and numerical results (Zhang et al.,

1994; Orlandi and Ebstein, 2000).

The results presented in Figs. 2 and 3 were obtained

by using the dynamic subgrid scale model. When using

the Smagorinsky model small differences are shown on

the mean velocity profile at Re ¼ 4900 while noticeable
discrepancies are seen about the statistics of turbulence,

as it will discussed later on (Fig. 10).

In Fig. 4, two LES computations are presented: the

first with the Smagorinsky model and the second with a

Fig. 2. Axial mean velocity normalized by the bulk velocity Ub as

function of the wall distance for Re ¼ 4900.

Fig. 3. Axial mean velocity normalized on us as function of the dis-

tance (in wall units) from the wall for Re ¼ 4900.

Fig. 4. Axial mean velocity normalized by the bulk velocity Ub as

function of the wall distance.
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dynamic model. These computations are compared to a

DNS prediction as well as to simulations on two coarser

grids without subgrid-scale model. The LES profile

using a dynamic model is in a good agreement with the
vz-profile predicted by DNS. Additionally, a coarse

DNS and a LES with a dynamic model were performed

by using the same grid (65� 39� 65). Excellent agree-

ment is obtained applying this LES in comparison with

the DNS data base. It seems indeed that the grid scale is

much finer than the dominant scales of the flow so that

the dynamic model suffices to yield the right behaviour

of the dominant scales. Hence, the dynamic subgrid-
scale contribution vanishes and the LES turns into

DNS. On the other hand, the predictions for the axial

velocities using LES with the Smagorinsky model and

the simulation without subgrid-scale model do not agree

well with the DNS results. Similar conclusion can also

be drawn from the results shown in Fig. 5.

The reason of this discrepancy may be the value of

the constant CS of the Smagorinsky model (here
CS ¼ 0:15). One of the problems with the Smagorinsky

model is that the appropriate value of the coefficient CS

varies according to the flow regimes. In particular, it is

zero for laminar flow and it is should be reduced near

the walls from its value (CS ¼ 0:15) at high-Reynolds-

number free turbulent flows. The Smagorinsky model

works well for isotropic turbulence whereas it is too

dissipative for inhomogeneous flows because it transfers
too much energy to the residual motions (Pope, 2000).

For inhomogeneous flows, and in particular for wall

bounded flows, the constant CS has to be modified. For

example, CS was decreased to CS ¼ 0:1 in a channel

(Deardorff, 1970; Piomelli et al., 1988) or to CS ¼ 0:065
(Moin and Kim, 1982).

It is worth noting that Mason and Thomson (1992)

have studied atmospheric boundary layers and con-

Fig. 5. Axial mean velocity normalized on us as function of the dis-

tance (in wall units) from the wall.

Fig. 6. Reynolds shear–stress in wall units for N ¼ 1 and Re ¼ 7400.

Fig. 7. (a) Tangential mean velocity versus wall distance y for

Re ¼ 7400. (b) Tangential mean velocity versus wall distance y for

N ¼ 1.
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cluded that the Smagorinsky model is inherently inca-

pable of yielding the correct logarithmic velocity pro-

files. In addition to these deficiencies, another lack of the

Smagorinsky model is that it implies alignment of the
turbulent stresses and mean rates of strain. However

some numerical (Clark et al., 1979) and experimental

(Liu et al., 1994) tests have shown that the alignment is

poor. It is important to recognise that the performance

of the Smagorinsky model depends on the Reynolds

number and on the choice of the type and width of the

filter. Thus, it would be very interesting to investigate

the influence of these parameters and of the Smagorin-
sky constant CS on the statistics in turbulent flows in

rotating pipes.

Fig. 6 shows that the LES with the dynamic model

leads to closer agreement with the DNS predictions of

the Reynolds stresses than the simulation without a

subgrid-scale model. The discrepancy is more pro-

nounced for hv0hv0zi
þ
. Therefore, the results shown in

Figs. 4–6 emphasise show how important is the subgrid-
scale model. In particular the dynamic model is more

promising than the Smagorinsky model because there is

no adjustable external constant. We conclude then that

an appropriate LES gives satisfactory predictions of the

rotating pipe flow, and that the subgrid-scale models

allows an improvement of the results when coarse grids

are used.

Fig. 7 show the mean tangential velocity scaled with
the rotating wall velocity versus the wall distance y. In
the fully developed flow regime, the tangential velocity

profile can be characterised by a parabolic shape (Ki-

kuyama et al., 1983). In the present work, the predic-

tions of the tangential velocity profile were also found to

approach a parabolic shape. Such a velocity profile is

well predicted by the dynamic model and by DNS. It

appears that the effects of the rotation rate and of the

Reynolds number on the tangential velocity profile are

not very important since vh is almost independent of N
and Re. Similar observations were reported by Reich

and Beer (1989) and by Kikuyama et al. (1983).

Fig. 8 shows that the rotation of the wall at N ¼ 1 has

large effects on the rms-velocity profile, these effects

being more pronounced for the streamwise rms-velocity.

Similar observations have been reported by Eggels et al.

(1994b) and by Orlandi and Fatica (1997). It can be seen

that the fluctuating velocity components obtained with
the two subgrid scale models are quite close to those of

the DNS, although the results given by the dynamic

subgrid scale model are slightly better. The streamwise

rms-velocity is presented for various rotation numbers

Fig. 8. Root-mean-square (rms) profiles of azimuthal, radial and axial

velocity components for Re ¼ 7400.

Fig. 9. Rms profiles of axial velocity for Re ¼ 7400.

Fig. 10. Reynolds shear stress in wall units for N ¼ 2 and Re ¼ 4900.
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in Fig. 9. Near the wall, the peak is reduced when N
increases and the distributions are almost identical in the

fully turbulent core region for N ¼ 2 and N ¼ 1. Orlandi

and Fatica (1997) indicate that this tendency is, in a
certain sense, an isotropization of turbulence when the

rotation rate increases. It should be noted that the dis-

tributions of hv0r2i
1=2 (or hv0h2i

1=2) tend also to get the

same values when the pipe rotates.

The simulated rms with both subgrid scale models are

close to those of DNS but the results calculated using

the dynamic subgrid scale model indicate a better

agreement. It is worth mentioning however, that there is
a large discrepancy in the simulation when using the

Smagorinsky model for N ¼ 0. The peak in the axial rms

profile is obtained but at somewhat larger distance from

the wall (at yþ  23); furthermore, the peak is too broad

(a)

(b)

Fig. 11. (a) Contour lines of the axial velocity fluctuations scaled by the rms for N ¼ 0 and Re ¼ 7400. (b) Contour lines of the axial velocity

fluctuations scaled by the rms for N ¼ 2 and Re ¼ 7400.
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in this simulation. Nevertheless, the simulated rms are in

reasonable agreement with those computed by Orlandi

and Fatica (1997).

The Reynolds shear–stress distributions are shown in
Fig. 10 for N ¼ 2 at Re ¼ 4900. The only non-negligible

stress in a non-rotating pipe is hv0rv0zi
þ. When the pipe

rotates, this stress is reduced and the other two stresses

hv0rv0hi
þ and hv0hv0zi

þ increase. From Fig. 10, it becomes

clear that the three Reynolds stresses are then compa-

rable. Near the rotating wall, the high values of hv0hv0zi
þ

are related to the tilting of the near wall vortical struc-

tures (Orlandi and Fatica, 1997). In the core region of
the flow, the behaviour of hv0hv0ri

þ is almost linear. The

Reynolds stresses computed by using the Smagorinsky

model are larger than those computed with the dynamic

model which are much closer to the DNS stresses.

(a)

(b)

Fig. 12. (a) Contour plot of the axial vorticity component for N ¼ 0 and Re ¼ 7400. (b) Contour plot of the axial vorticity component for N ¼ 2 and

Re ¼ 7400.
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Figs. 11 show contour lines of a snapshot of the axial

velocity fluctuations v0z scaled by the rms value at each r
in a plane perpendicular to the axis (r–h plane), at N ¼ 0

(Fig. 11(a)) and at N ¼ 2 (Fig. 11(b)) and for Re ¼ 7400.
These plots present a picture of the turbulent structures

(and give an idea of sweep and ejection events). The

structures drawn as solid lines correspond to positive

values of v0z. It can be seen the positive v0z move towards

the wall. For a fixed pipe (N ¼ 0), the near wall region is

dominated by high intensity fluctuations. The sweep

events carry high-speed fluid to the wall. For a rotating

pipe (N ¼ 2) the spreading of the fluid towards the wall
is reduced, and very close to the wall there is slightly less

turbulent fluctuations (due to the suppression of radial

fluctuations). The rotation induce a transport of the

fluctuations from the wall towards the central region.

Fig. 12 show contours plots of the axial vorticity

component for N ¼ 0 (Fig. 12(a)) and N ¼ 2 (Fig. 12(b))

at Re ¼ 7400. It can be seen that vortical structures exist

in certain regions and that the number of structures in
the rotating case is larger than for N ¼ 0, the intensity of

the elongated vortical structures being lower for the

rotating pipe.

4. Conclusion

A study of the influence of the rotation number on
the fully developed turbulent flow inside an axially ro-

tating pipe was conducted. The simulations were carried

out in the same range of rotation numbers and Reynolds

numbers as in the DNS by Orlandi and Fatica (1997)

who have compared their numerical results with the

measurements of Reich and Beer (1989), and with the

DNS by Eggels et al. (1994b). The results of the present

simulations compare reasonably well with the DNS by
Orlandi and Fatica (1997), despite some discrepancies. It

is observed that the intensity of turbulence in the ro-

tating pipe decreases gradually with an increase in pipe

rotation due to the stabilizing effect of centrifugal forces.

We have shown that the dynamic model gives better

performance for predicting the fully developed turbulent

pipe flow, with or without rotation, than the Smago-

rinsky model because it is not necessary to specify an
external constant according to the rotation speed.

It can be drawn that all phenomena in the rotating

and non-rotating turbulent pipe flows can be reasonably

captured by LES provided that an appropriate model is

retained. This study is a first contribution towards a

check of the applicability of the Smagorinsky and the

dynamic models to swirling flows.
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